Identification of Euglena gracilis β-1,3-glucan phosphorylase and establishment of a new glycoside hydrolase (GH) family GH149
نویسندگان
چکیده
Glycoside phosphorylases (EC 2.4.x.x) carry out the reversible phosphorolysis of glucan polymers, producing the corresponding sugar 1-phosphate and a shortened glycan chain. β-1,3-Glucan phosphorylase activities have been reported in the photosynthetic euglenozoan Euglena gracilis, but the cognate protein sequences have not been identified to date. Continuing our efforts to understand the glycobiology of E. gracilis, we identified a candidate phosphorylase sequence, designated EgP1, by proteomic analysis of an enriched cellular protein lysate. We expressed recombinant EgP1 in Escherichia coli and characterized it in vitro as a β-1,3-glucan phosphorylase. BLASTP identified several hundred EgP1 orthologs, most of which were from Gram-negative bacteria and had 37-91% sequence identity to EgP1. We heterologously expressed a bacterial metagenomic sequence, Pro_7066 in E. coli and confirmed it as a β-1,3-glucan phosphorylase, albeit with kinetics parameters distinct from those of EgP1. EgP1, Pro_7066, and their orthologs are classified as a new glycoside hydrolase (GH) family, designated GH149. Comparisons between GH94, EgP1, and Pro_7066 sequences revealed conservation of key amino acids required for the phosphorylase activity, suggesting a phosphorylase mechanism that is conserved between GH94 and GH149. We found bacterial GH149 genes in gene clusters containing sugar transporter and several other GH family genes, suggesting that bacterial GH149 proteins have roles in the degradation of complex carbohydrates. The Bacteroidetes GH149 genes located to previously identified polysaccharide utilization loci, implicated in the degradation of complex carbohydrates. In summary, we have identified a eukaryotic and a bacterial β-1,3-glucan phosphorylase and uncovered a new family of phosphorylases that we name GH149.
منابع مشابه
Identification and characterization of cytosolic fructose-1,6-bisphosphatase in Euglena gracilis.
Euglena gracilis has the ability to accumulate a storage polysaccharide, a β-1,3-glucan known as paramylon, under aerobic conditions. Under anaerobic conditions, E. gracilis cells degrade paramylon and synthesize wax esters. Cytosolic fructose-1,6-bisphosphatase (FBPase) appears to be a key enzyme in gluconeogenesis and position branch point of carbon partitioning between paramylon and wax este...
متن کامل1,2-β-Oligoglucan Phosphorylase from Listeria innocua
We characterized recombinant Lin1839 protein (Lin1839r) belonging to glycoside hydrolase family 94 from Listeria innocua. Lin1839r catalyzed the synthesis of a series of 1,2-β-oligoglucans (Sopn: n denotes degree of polymerization) using sophorose (Sop2) as the acceptor and α-D-glucose 1-phosphate (Glc1P) as the donor. Lin1839r recognized glucose as a very weak acceptor substrate to form polyme...
متن کاملRecombinant production and characterization of full-length and truncated β-1,3-glucanase PglA from Paenibacillus sp. S09
BACKGROUND β-1,3-Glucanases catalyze the hydrolysis of glucan polymers containing β-1,3-linkages. These enzymes are of great biotechnological, agricultural and industrial interest. The applications of β-1,3-glucanases is well established in fungal disease biocontrol, yeast extract production and wine extract clarification. Thus, the identification and characterization of novel β-1,3-glucanases ...
متن کاملFunctional and Structural Analysis of a β-Glucosidase Involved in β-1,2-Glucan Metabolism in Listeria innocua
Despite the presence of β-1,2-glucan in nature, few β-1,2-glucan degrading enzymes have been reported to date. Recently, the Lin1839 protein from Listeria innocua was identified as a 1,2-β-oligoglucan phosphorylase. Since the adjacent lin1840 gene in the gene cluster encodes a putative glycoside hydrolase family 3 β-glucosidase, we hypothesized that Lin1840 is also involved in β-1,2-glucan diss...
متن کاملProteomic analysis of muscle tissue from rainbow trout (Oncorhynchus mykiss) fed dietary β-glucan
The aim of this study was to examine the changes in muscle proteome of the rainbow trout fed dietary β-glucan. The experimental diets contained 0 (control), 0.1% and 0.2% β-1,3/1,6 yeast glucan. First, feeding larvae were fed to apparent satiation nine times per day with their respective diets over two months. The percentage of body weight gain and feed efficiency of fish fed 0.2% diet was sign...
متن کامل